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Abstract—Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks

by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to

build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference

and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks,

and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into

fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip

architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to

produce accurate and detailed segmentations. Our fully convolutional networks achieve improved segmentation of PASCAL VOC

(30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of

a second for a typical image.

Index Terms—Semantic Segmentation, Convolutional Networks, Deep Learning, Transfer Learning

Ç

1 INTRODUCTION

CONVOLUTIONAL networks are driving advances in rec-
ognition. Convnets are not only improving for whole-

image classification [1], [2], [3], but also making progress on
local tasks with structured output. These include advances
in bounding box object detection [4], [5], [6], part and key-
point prediction [7], [8], and local correspondence [8], [9].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[10], [11], [12], [13], [14], [15], [16], in which each pixel is
labeled with the class of its enclosing object or region, but
with shortcomings that this work addresses.

We show that fully convolutional networks (FCNs) trained
end-to-end, pixels-to-pixels on semantic segmentation exceed
the previous best results without further machinery. To our
knowledge, this is the first work to train FCNs end-to-end (1)
for pixelwise prediction and (2) from supervised pre-training.
Fully convolutional versions of existing networks predict
dense outputs from arbitrary-sized inputs. Both learning and
inference are performed whole-image-at-a-time by dense
feedforward computation and backpropagation, as shown in
Fig. 1. In-network upsampling layers enable pixelwise predic-
tion and learning in netswith subsampling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other

works. Patchwise training is common [10], [11], [12], [13],
[16], but lacks the efficiency of fully convolutional training.
Our approach does not make use of pre- and post-processing
complications, including superpixels [12], [14], proposals
[14], [15], or post-hoc refinement by random fields or local
classifiers [12], [14]. Our model transfers recent success in
classification [1], [2], [3] to dense prediction by reinterpreting
classification nets as fully convolutional and fine-tuning
from their learned representations. In contrast, previous
works have applied small convnets without supervised pre-
training [10], [12], [13].

Semantic segmentation faces an inherent tension between
semantics and location: global information resolves what
while local information resolves where. What can be done to
navigate this spectrum from location to semantics? How can
local decisions respect global structure? It is not immediately
clear that deep networks for image classification yield repre-
sentations sufficient for accurate, pixelwise recognition.

In the conference version of this paper [17], we cast pre-
trained networks into fully convolutional form, and augment
themwith a skip architecture that takes advantage of the full
feature spectrum. The skip architecture fuses the feature
hierarchy to combine deep, coarse, semantic information
and shallow, fine, appearance information (see Section 4.3
and Fig. 3). In this light, deep feature hierarchies encode loca-
tion and semantics in a nonlinear local-to-global pyramid.

This journal paper extends our earlier work [17] through
further tuning, analysis, and more results. Alternative
choices, ablations, and implementation details better cover
the space of FCNs. Tuning optimization leads to more accu-
rate networks and a means to learn skip architectures all-at-
once instead of in stages. Experiments that mask foreground
and background investigate the role of context and shape.
Results on the object and scene labeling of PASCAL-Context
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reinforce merging object segmentation and scene parsing as
unified pixelwise prediction.

In the next section, we review related work on deep
classification nets, FCNs, recent approaches to semantic seg-
mentation using convnets, and extensions to FCNs. The fol-
lowing sections explain FCN design, introduce our
architecture with in-network upsampling and skip layers,
and describe our experimental framework. Next, we demon-
strate improved accuracy on PASCALVOC 2011-2, NYUDv2,
SIFT Flow, and PASCAL-Context. Finally, we analyze design
choices, examine what cues can be learned by an FCN, and
calculate recognition bounds for semantic segmentation.

2 RELATED WORK

Our approach draws on recent successes of deep nets for
image classification [1], [2], [3] and transfer learning [18],
[19]. Transfer was first demonstrated on various visual rec-
ognition tasks [18], [19], then on detection, and on both
instance and semantic segmentation in hybrid proposal-
classifier models [5], [14], [15]. We now re-architect and
fine-tune classification nets to direct, dense prediction of
semantic segmentation. We chart the space of FCNs and
relate prior models both historical and recent.

Fully convolutional networks. To our knowledge, the
idea of extending a convnet to arbitrary-sized inputs first
appeared in Matan et al. [20], which extended the classic
LeNet [21] to recognize strings of digits. Because their net
was limited to one-dimensional input strings, Matan et al.
used Viterbi decoding to obtain their outputs. Wolf and
Platt [22] expand convnet outputs to two-dimensional maps
of detection scores for the four corners of postal address
blocks. Both of these historical works do inference and
learning fully convolutionally for detection. Ning et al. [10]
define a convnet for coarse multiclass segmentation of C.
elegans tissues with fully convolutional inference.

Fully convolutional computation has also been exploited in
the present era of many-layered nets. Sliding window detec-
tion by Sermanet et al. [4], semantic segmentation by Pinheiro
and Collobert [13], and image restoration by Eigen et al. [23]
do fully convolutional inference. Fully convolutional training
is rare, but used effectively by Tompson et al. [24] to learn an
end-to-end part detector and spatial model for pose estima-
tion, although they do not exposit on or analyze thismethod.

Dense prediction with convnets. Several recent works
have applied convnets to dense prediction problems,
including semantic segmentation by Ning et al. [10], Farabet

et al. [12], and Pinheiro and Collobert [13]; boundary predic-
tion for electron microscopy by Ciresan et al. [11] and for
natural images by a hybrid convnet/nearest neighbor
model by Ganin and Lempitsky [16]; and image restoration
and depth estimation by Eigen et al. [23], [25]. Common ele-
ments of these approaches include

� small models restricting capacity and receptive fields;
� patchwise training [10], [11], [12], [13], [16];
� refinement by superpixel projection, random field

regularization, filtering, or local classification [11],
[12], [16];

� “interlacing” to obtain dense output [4], [13], [16];
� multi-scale pyramid processing [12], [13], [16];
� saturating tanh nonlinearities [12], [13], [23]; and
� ensembles [11], [16],

whereas our method does without this machinery. However, we

do study patchwise training (Section 3.4) and “shift-and-stitch”

dense output (Section 3.2) from the perspective of FCNs. We

also discuss in-network upsampling (Section 3.3), of which the

fully connected prediction by Eigen et al. [25] is a special case.

Unlike these existing methods, we adapt and extend
deep classification architectures, using image classification
as supervised pre-training, and fine-tune fully convolution-
ally to learn simply and efficiently from whole image inputs
and whole image ground thruths.

Hariharan et al. [14] and Gupta et al. [15] likewise adapt
deep classification nets to semantic segmentation, but do so
in hybrid proposal-classifier models. These approaches
fine-tune an R-CNN system [5] by sampling bounding
boxes and/or region proposals for detection, semantic seg-
mentation, and instance segmentation. Neither method is
learned end-to-end. They achieve the previous best segmen-
tation results on PASCAL VOC and NYUDv2 respectively,
so we directly compare our standalone, end-to-end FCN to
their semantic segmentation results in Section 5.

Combining feature hierarchies. We fuse features across
layers to define a nonlinear local-to-global representation
that we tune end-to-end. The Laplacian pyramid [26] is a
classic multi-scale representation made of fixed smoothing
and differencing. The jet of Koenderink and van Doorn [27]
is a rich, local feature defined by compositions of partial
derivatives. In the context of deep networks, Sermanet et al.
[28] fuse intermediate layers but discard resolution in doing
so. In contemporary work Hariharan et al. [29] and
Mostajabi et al. [30] also fuse multiple layers but do not
learn end-to-end and rely on fixed bottom-up grouping.

FCN extensions. Following the conference version of this
paper [17], FCNs have been extended to new tasks and data.
Tasks include region proposals [31], contour detection [32],
depth regression [33], optical flow [34], and weakly-super-
vised semantic segmentation [35], [36], [37], [38].

In addition, new works have improved the FCNs pre-
sented here to further advance the state-of-the-art in seman-
tic segmentation. The DeepLab models [39] raise output
resolution by dilated convolution and dense CRF inference.
The joint CRFasRNN [40] model is an end-to-end integra-
tion of the CRF for further improvement. ParseNet [41]
normalizes features for fusion and captures context with
global pooling. The “deconvolutional network” approach of
[42] restores resolution by proposals, stacks of learned

Fig. 1. Fully convolutional networks can efficiently learn to make dense
predictions for per-pixel tasks like semantic segmentation.
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deconvolution, and unpooling. U-Net [43] combines skip
layers and learned deconvolution for pixel labeling of
microscopy images. The dilation architecture of [44] makes
thorough use of dilated convolution for pixel-precise output
without a random field or skip layers.

3 FULLY CONVOLUTIONAL NETWORKS

Each layer output in a convnet is a three-dimensional
array of size h� w� d, where h and w are spatial dimen-
sions, and d is the feature or channel dimension. The first
layer is the image, with pixel size h� w, and d channels.
Locations in higher layers correspond to the locations in
the image they are path-connected to, which are called
their receptive fields.

Convnets are inherently translation invariant. Their basic
components (convolution, pooling, and activation func-
tions) operate on local input regions, and depend only on
relative spatial coordinates. Writing xij for the data vector at
location ði; jÞ in a particular layer, and yij for the following

layer, these functions compute outputs yij by

yij ¼ fks
�fxsiþdi;sjþdjg0�di;dj< k

�
;

where k is called the kernel size, s is the stride or subsam-
pling factor, and fks determines the layer type: a matrix
multiplication for convolution or average pooling, a spatial
max for max pooling, or an elementwise nonlinearity for an
activation function, and so on for other types of layers.

This functional form is maintained under composition,
with kernel size and stride obeying the transformation rule

fks � gk0s0 ¼ ðf � gÞk0þðk�1Þs0;ss0 :

While a general net computes a general nonlinear function,
a net with only layers of this form computes a nonlinear fil-
ter, which we call a deep filter or fully convolutional network.
An FCN naturally operates on an input of any size, and pro-
duces an output of corresponding (possibly resampled) spa-
tial dimensions.

A real-valued loss function composed with an FCN
defines a task. If the loss function is a sum over the spatial
dimensions of the final layer, ‘ðx; uÞ ¼ P

ij ‘
0ðxij; uÞ, its

parameter gradient will be a sum over the parameter gra-
dients of each of its spatial components. Thus stochastic gra-
dient descent on ‘ computed on whole images will be the
same as stochastic gradient descent on ‘0, taking all of the
final layer receptive fields as a minibatch.

When these receptive fields overlap significantly, both
feedforward computation and backpropagation are much
more efficient when computed layer-by-layer over an entire
image instead of independently patch-by-patch.

We next explain how to convert classification nets into
fully convolutional nets that produce coarse output maps.
For pixelwise prediction, we need to connect these coarse
outputs back to the pixels. Section 3.2 describes a trick
used for this purpose (e.g., by “fast scanning” [45]). We
explain this trick in terms of network modification. As an
efficient, effective alternative, we upsample in Section 3.3,
reusing our implementation of convolution. In Section 3.4
we consider training by patchwise sampling, and give

evidence in Section 4.4 that our whole image training is
faster and equally effective.

3.1 Adapting Classifiers for Dense Prediction

Typical recognition nets, including LeNet [21], AlexNet [1],
and its deeper successors [2], [3], ostensibly take fixed-sized
inputs and produce non-spatial outputs. The fully connected
layers of these nets have fixed dimensions and throw away
spatial coordinates. However, fully connected layers can also
be viewed as convolutionswith kernels that cover their entire
input regions. Doing so casts these nets into fully convolu-
tional networks that take input of any size and make spatial
outputmaps. This transformation is illustrated in Fig. 2.

Furthermore, while the resulting maps are equivalent to
the evaluation of the original net on particular input
patches, the computation is highly amortized over the
overlapping regions of those patches. For example, while
AlexNet takes 1:2 ms (on a typical GPU) to infer the classifi-
cation scores of a 227� 227 image, the fully convolutional
net takes 22 ms to produce a 10� 10 grid of outputs from a
500� 500 image, which is more than 5 times faster than the
na€ıve approach.1

The spatial output maps of these convolutionalized mod-
els make them a natural choice for dense problems like
semantic segmentation. With ground truth available at
every output cell, both the forward and backward passes
are straightforward, and both take advantage of the inher-
ent computational efficiency (and aggressive optimization)
of convolution. The corresponding backward times for the
AlexNet example are 2:4 ms for a single image and 37 ms
for a fully convolutional 10� 10 output map, resulting in a
speedup similar to that of the forward pass.

While our reinterpretation of classification nets as fully
convolutional yields output maps for inputs of any size, the
output dimensions are typically reduced by subsampling.
The classification nets subsample to keep filters small and
computational requirements reasonable. This coarsens the
output of a fully convolutional version of these nets, reduc-
ing it from the size of the input by a factor equal to the pixel
stride of the receptive fields of the output units.

Fig. 2. Transforming fully connected layers into convolution layers ena-
bles a classification net to output a spatial map. Adding differentiable
interpolation layers and a spatial loss (as in Fig. 1) produces an efficient
machine for end-to-end pixelwise learning.

1. Assuming efficient batching of single image inputs. The classifica-
tion scores for a single image by itself take 5.4 ms to produce, which is
nearly 25 times slower than the fully convolutional version.
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3.2 Shift-and-Stitch Is Filter Dilation

Dense predictions can be obtained from coarse outputs by
stitching together outputs from shifted versions of the
input. If the output is downsampled by a factor of f , shift
the input x pixels to the right and y pixels down, once for

every ðx; yÞ such that 0 � x; y < f . Process each of these f2

inputs, and interlace the outputs so that the predictions cor-
respond to the pixels at the centers of their receptive fields.

Although this transformation na€ıvely increases the cost by
a factor of f2, there is a well-known trick for efficiently pro-
ducing identical results [4], [45]. (This trick is also used in the
algorithme �a trous [46], [47] for wavelet transforms and
related to theNoble identities [48] from signal processing.)

Consider a layer (convolution or pooling) with input
stride s, and a subsequent convolution layer with filter
weights fij (eliding the irrelevant feature dimensions). Set-
ting the earlier layer’s input stride to one upsamples its out-
put by a factor of s. However, convolving the original filter
with the upsampled output does not produce the same
result as shift-and-stitch, because the original filter only sees
a reduced portion of its (now upsampled) input. To produce
the same result, dilate (or “rarefy”) the filter by forming

f 0
ij ¼

fi=s;j=s if s divides both i and j;
0 otherwise

�

(with i and j zero-based). Reproducing the full net output of
shift-and-stitch involves repeating this filter enlargement
layer-by-layer until all subsampling is removed. (In prac-
tice, this can be done efficiently by processing subsampled
versions of the upsampled input.)

Simply decreasing subsampling within a net is a tradeoff:
the filters see finer information, but have smaller receptive
fields and take longer to compute. This dilation trick is
another kind of tradeoff: the output is denser without
decreasing the receptive field sizes of the filters, but the fil-
ters are prohibited from accessing information at a finer
scale than their original design.

Although we have done preliminary experiments with
dilation, we do not use it in our model. We find learning
through upsampling, as described in the next section, to be
effective and efficient, especially when combined with the
skip layer fusion described later on. For further detail
regarding dilation, refer to the dilated FCN of [44].

3.3 Upsampling Is (Fractionally Strided)
Convolution

Another way to connect coarse outputs to dense pixels is
interpolation. For instance, simple bilinear interpolation
computes each output yij from the nearest four inputs by a
linear map that depends only on the relative positions of
the input and output cells:

yij ¼
X1
a;b¼0

j1� a� fi=fgj j1� b� fj=fgj xbi=fcþa;bj=fcþb;

where f is the upsampling factor, and f�g denotes the frac-
tional part.

In a sense, upsampling with factor f is convolution with
a fractional input stride of 1=f . So long as f is integral, it’s
natural to implement upsampling through “backward

convolution” by reversing the forward and backward
passes of more typical input-strided convolution. Thus
upsampling is performed in-network for end-to-end learn-
ing by backpropagation from the pixelwise loss.

Per their use in deconvolution networks (esp. [19]), these
(convolution) layers are sometimes referred to as deconvolu-
tion layers. Note that the convolution filter in such a layer
need not be fixed (e.g., to bilinear upsampling), but can be
learned. A stack of deconvolution layers and activation
functions can even learn a nonlinear upsampling.

In our experiments, we find that in-network upsampling
is fast and effective for learning dense prediction.

3.4 Patchwise Training Is Loss Sampling

In stochastic optimization, gradient computation is driven
by the training distribution. Both patchwise training and
fully convolutional training can be made to produce any
distribution of the inputs, although their relative computa-
tional efficiency depends on overlap and minibatch size.
Whole image fully convolutional training is identical to
patchwise training where each batch consists of all the
receptive fields of the output units for an image (or collec-
tion of images). While this is more efficient than uniform
sampling of patches, it reduces the number of possible
batches. However, random sampling of patches within an
image may be easily recovered. Restricting the loss to a ran-
domly sampled subset of its spatial terms (or, equivalently
applying a DropConnect mask [49] between the output and
the loss) excludes patches from the gradient.

If the kept patches still have significant overlap, fully
convolutional computation will still speed up training. If
gradients are accumulated over multiple backward passes,
batches can include patches from several images. If inputs
are shifted by values up to the output stride, random selec-
tion of all possible patches is possible even though the out-
put units lie on a fixed, strided grid.

Sampling in patchwise training can correct class imbal-
ance [10], [11], [12] and mitigate the spatial correlation of
dense patches [13], [14]. In fully convolutional training,
class balance can also be achieved by weighting the loss,
and loss sampling can be used to address spatial correlation.

We explore training with sampling in Section 4.4, and do
not find that it yields faster or better convergence for dense
prediction. Whole image training is effective and efficient.

4 SEGMENTATION ARCHITECTURE

We cast ILSVRC classifiers into FCNs and augment them for
dense prediction with in-network upsampling and a pixel-
wise loss. We train for segmentation by fine-tuning. Next,
we add skips between layers to fuse coarse, semantic and
local, appearance information. This skip architecture is
learned end-to-end to refine the semantics and spatial preci-
sion of the output.

For this investigation, we train and validate on the PAS-
CAL VOC 2011 segmentation challenge [50]. We train with
a per-pixel softmax loss and validate with the standard met-
ric of mean pixel intersection over union, with the mean
taken over all classes, including background. The training
ignores pixels that are masked out (as ambiguous or diffi-
cult) in the ground truth.
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4.1 From Classifier to Dense FCN

We begin by convolutionalizing proven classification archi-
tectures as in Section 3. We consider the AlexNet2 architec-
ture [1] that won ILSVRC12, as well as the VGG nets [2] and
the GoogLeNet3 [3] which did exceptionally well in
ILSVRC14. We pick the VGG 16-layer net,4 which we found
to be equivalent to the 19-layer net on this task. For GoogLe-
Net, we use only the final loss layer, and improve perfor-
mance by discarding the final average pooling layer. We
decapitate each net by discarding the final classifier layer,
and convert all fully connected layers to convolutions. We
append a 1� 1 convolution with channel dimension 21 to
predict scores for each of the PASCAL classes (including
background) at each of the coarse output locations, followed
by a (backward) convolution layer to bilinearly upsample
the coarse outputs to pixelwise outputs as described in Sec-
tion 3.3. Table 1 compares the preliminary validation results
along with the basic characteristics of each net. We report
the best results achieved after convergence at a fixed learn-
ing rate (at least 175 epochs).

Our training for this comparison follows the practices for
classification networks. We train by SGD with momentum.
Gradients are accumulated over 20 images. We set fixed
learning rates of 10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-
VGG16, and FCN-GoogLeNet, respectively, chosen by line

search. We use momentum 0:9, weight decay of 5�4 or 2�4,
and doubled learning rate for biases. We zero-initialize the
class scoring layer, as random initialization yielded neither
better performance nor faster convergence. Dropout is
included where used in the original classifier nets (however,
training without it made little to no difference).

Fine-tuning from classification to segmentation gives rea-
sonable predictions from each net. Even the worst model
achieved � 75 percent of the previous best performance.
FCN-VGG16 already appears to be better than previous
methods at 56.0 mean IU on val, compared to 52.6 on test
[14]. Although VGG and GoogLeNet are similarly accurate
as classifiers, our FCN-GoogLeNet did not match FCN-
VGG16. We select FCN-VGG16 as our base network.

4.2 Image-to-Image Learning

The image-to-image learning setting includes high effective
batch size and correlated inputs. This optimization requires
some attention to properly tune FCNs.

We begin with the loss. We do not normalize the loss, so
that every pixel has the same weight regardless of the batch
and image dimensions. Thus we use a small learning rate
since the loss is summed spatially over all pixels.

We consider two regimes for batch size. In the first, gra-
dients are accumulated over 20 images. Accumulation
reduces the memory required and respects the different
dimensions of each input by reshaping the network. We
picked this batch size empirically to result in reasonable
convergence. Learning in this way is similar to standard
classification training: each minibatch contains several
images and has a varied distribution of class labels. The
nets compared in Table 1 are optimized in this fashion.

However, batching is not the only way to do image-
wise learning. In the second regime, batch size one is
used for online learning. Properly tuned, online learning
achieves higher accuracy and faster convergence in both
number of iterations and wall clock time. Additionally,
we try a higher momentum of 0:99, which increases the
weight on recent gradients in a similar way to batching.
See Table 2 for the comparison of accumulation, online,
and high momentum or “heavy” learning (discussed
further in Section 6.2).

4.3 CombiningWhat andWhere

We define a new fully convolutional net for segmentation
that combines layers of the feature hierarchy and refines the
spatial precision of the output. See Fig. 3.

While fully convolutionalized classifiers fine-tuned to
semantic segmentation both recognize and localize, as
shown in Section 4.1, these networks can be improved to
make direct use of shallower, more local features. Even
though these base networks score highly on the standard
metrics, their output is dissatisfyingly coarse (see Fig. 4).
The stride of the network prediction limits the scale of detail
in the upsampled output.

We address this by adding skips [51] that fuse layer out-
puts, in particular to include shallower layers with finer
strides in prediction. This turns a line topology into a DAG:
edges skip ahead from shallower to deeper layers. It is natu-
ral to make more local predictions from shallower layers
since their receptive fields are smaller and see fewer pixels.

TABLE 1
Adapting ILSVRC Classifiers to FCNs

FCN-AlexNet FCN-VGG16 FCN-GoogLeNet3

mean IU 39.8 56.0 42.5
forward time 16 ms 100 ms 20 ms
conv. layers 8 16 22
parameters 57M 134M 6M
rf size 355 404 907
max stride 32 32 32

We compare performance by mean intersection over union on the validation set
of PASCAL VOC 2011 and by inference time (averaged over 20 trials for a
500� 500 input on an NVIDIA Titan X). We detail the architecture of the
adapted nets with regard to dense prediction: number of parameter layers,
receptive field size of output units, and the coarsest stride within the net.
(These numbers give the best performance obtained at a fixed learning rate, not
best performance possible.)

TABLE 2
Comparison of Image-to-Image Optimization Methods

batch
size

mom. pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-accum 20 0.9 86.0 66.5 51.9 76.5
FCN-online 1 0.9 89.3 76.2 60.7 81.8
FCN-heavy 1 0.99 90.5 76.5 63.6 83.5

All methods are trained on a fixed sequence of 100,000 images (sampled from a
dataset of 8,498) to control for stochasticity and equalize the number of gradi-
ent computations. The loss is not normalized so that every pixel has the same
weight no matter the batch and image dimensions. Scores are the best achieved
during training on a subset5 of PASCAL VOC 2011 segval. Learning is end-
to-end with FCN-VGG16.

2. Using the publicly available CaffeNet reference model.
3. We use our own reimplementation of GoogLeNet. Ours is trained

with less extensive data augmentation, and gets 68.5 percent top-1 and
88.4 percent top-5 ILSVRC accuracy.

4. Using the publicly available version from the Caffe model zoo.
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Once augmented with skips, the network makes and fuses
predictions from several streams that are learned jointly
and end-to-end.

Combining fine layers and coarse layers lets the model
make local predictions that respect global structure. This
crossing of layers and resolutions is a learned, nonlinear
counterpart to the multi-scale representation of the Lapla-
cian pyramid [26]. By analogy to the jet of Koenderick and
van Doorn [27], we call our feature hierarchy the deep jet.

Layer fusion is essentially an elementwise operation.
However, the correspondence of elements across layers is
complicated by resampling and padding. Thus, in general,
layers to be fused must be aligned by scaling and cropping.
We bring two layers into scale agreement by upsampling
the lower-resolution layer, doing so in-network as
explained in Section 3.3. Cropping removes any portion of
the upsampled layer which extends beyond the other layer
due to padding. This results in layers of equal dimensions
in exact alignment. The offset of the cropped region
depends on the resampling and padding parameters of all
intermediate layers. Determining the crop that results in
exact correspondence can be intricate, but it follows auto-
matically from the network definition (and we include code
for it in Caffe).

Having spatially aligned the layers, we next pick a fusion
operation. We fuse features by concatenation, and immedi-
ately follow with classification by a “score layer” consisting
of a 1� 1 convolution. Rather than storing concatenated fea-
tures in memory, we commute the concatenation and subse-
quent classification (as both are linear). Thus, our skips are
implemented by first scoring each layer to be fused by 1� 1
convolution, carrying out any necessary interpolation and
alignment, and then summing the scores. We also considered
max fusion, but found learning to be difficult due to gradi-
ent switching. The score layer parameters are zero-initial-
ized when a skip is added, so that they do not interfere with

existing predictions of other streams. Once all layers have
been fused, the final prediction is then upsampled back to
image resolution.

Skip architectures for segmentation. We define a skip
architecture to extend FCN-VGG16 to a three-stream net
with eight pixel stride shown in Fig. 3. Adding a skip from
pool4 halves the stride by scoring from this stride sixteen
layer. The 2� interpolation layer of the skip is initialized to
bilinear interpolation, but is not fixed so that it can be
learned as described in Section 3.3. We call this two-stream
net FCN-16s, and likewise define FCN-8s by adding a fur-
ther skip from pool3 to make stride eight predictions.
(Note that predicting at stride eight does not significantly
limit the maximum achievable mean IU; see Section 6.3.)

We experiment with both staged training and all-at-once
training. In the staged version, we learn the single-stream
FCN-32s, then upgrade to the two-stream FCN-16s and con-
tinue learning, and finally upgrade to the three-stream
FCN-8s and finish learning. At each stage the net is learned
end-to-end, initialized with the parameters of the earlier
net. The learning rate is dropped 100� from FCN-32s to
FCN-16s and 100� more from FCN-16s to FCN-8s, which
we found to be necessary for continued improvements.

Fig. 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are shown as
grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-stream net,
described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining predictions from both
the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic information. Third row (FCN-
8s): Additional predictions from pool3, at stride 8, provide further precision.

Fig. 4. Refining fully convolutional networks by fusing information from
layers with different strides improves spatial detail. The first three images
show the output from our 32, 16, and 8 pixel stride nets (see Fig. 3).
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Learning all-at-once rather than in stages gives nearly
equivalent results, while training is faster and less tedious.
However, disparate feature scalesmake na€ıve training prone
to divergence. To remedy thiswe scale each stream by a fixed
constant, for a similar in-network effect to the staged learn-
ing rate adjustments. These constants are picked to approxi-
mately equalize average feature norms across streams.
(Other normalization schemes should have similar effect.)

With FCN-16s validation score improves to 65.0 mean IU,
and FCN-8s brings a minor improvement to 65.5. At this
point our fusion improvements have met diminishing
returns, so we do not continue fusing even shallower layers.

To identify the contribution of the skips we compare
scoring from the intermediate layers in isolation, which
results in poor performance, or dropping the learning rate
without adding skips, which gives negligible improvement
in score without refining the visual quality of output. All
skip comparisons are reported in Table 3. Fig. 4 shows the
progressively finer structure of the output.

4.4 Experimental Framework

Fine-tuning. We fine-tune all layers by backpropagation
through the whole net. Fine-tuning the output classifier
alone yields only 73 percent of the full fine-tuning perfor-
mance as compared in Table 3. Fine-tuning in stages takes
36 hours on a single GPU. Learning FCN-8s all-at-once takes
half the time to reach comparable accuracy. Training from
scratch gives substantially lower accuracy.

More training data. The PASCAL VOC 2011 segmenta-
tion training set labels 1,112 images. Hariharan et al. [52]
collected labels for a larger set of 8,498 PASCAL training
images, which was used to train the previous best system,
SDS [14]. This training data improves the FCN-32s valida-
tion score5 from 57.7 to 63.6 mean IU and improves the
FCN-AlexNet score from 39.8 to 48.0 mean IU.

Loss. The per-pixel, unnormalized softmax loss is a natu-
ral choice for segmenting images of any size into disjoint
classes, so we train our nets with it. The softmax operation
induces competition between classes and promotes the most
confident prediction, but it is not clear that this is necessary

or helpful. For comparison, we train with the sigmoid cross-
entropy loss and find that it gives similar results, even
though it normalizes each class prediction independently.

Patch sampling. As explained in Section 3.4, our whole
image training effectively batches each image into a regular
grid of large, overlapping patches. By contrast, prior work
randomly samples patches over a full dataset [10], [11], [12],
[13], [16], potentially resulting in higher variance batches
that may accelerate convergence [53]. We study this tradeoff
by spatially sampling the loss in the manner described ear-
lier, making an independent choice to ignore each final layer
cell with some probability 1� p. To avoid changing the
effective batch size, we simultaneously increase the number
of images per batch by a factor 1=p. Note that due to the effi-
ciency of convolution, this form of rejection sampling is still
faster than patchwise training for large enough values of p
(e.g., at least for p > 0:2 according to the numbers in Section
3.1). Fig. 5 shows the effect of this form of sampling on con-
vergence. We find that sampling does not have a significant
effect on convergence rate compared to whole image train-
ing, but takes significantly more time due to the larger num-
ber of images that need to be considered per batch. We
therefore choose unsampled, whole image training in our
other experiments.

Class balancing. Fully convolutional training can bal-
ance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3=4 are back-
ground), we find class balancing unnecessary.

Dense prediction. The scores are upsampled to the input
dimensions by backward convolution layers within the net.
Final layer backward convolution weights are fixed to bilin-
ear interpolation, while intermediate upsampling layers are
initialized to bilinear interpolation, and then learned. This
simple, end-to-end method is accurate and fast.

Augmentation. We tried augmenting the training data
by randomly mirroring and “jittering” the images by trans-
lating them up to 32 pixels (the coarsest scale of prediction)
in each direction. This yielded no noticeable improvement.

Implementation. All models are trained and tested with
Caffe [54] on a single NVIDIA Titan X. Our models and
code are publicly available at http://fcn.berkeleyvision.org.

5 RESULTS

We test our FCN on semantic segmentation and scene pars-
ing, exploring PASCAL VOC, NYUDv2, SIFT Flow, and

TABLE 3
Comparison of FCN Variations

pixel acc. mean acc. mean IU f.w. IU

FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3
FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 72.3

FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 22.4 67.0
FCN-pool3 70.9 13.7 9.2 57.6

Learning is end-to-end with batch size one and high momentum, with the
exception of the fixed variant that fixes all features. Note that FCN-32s is
FCN-VGG16, renamed to highlight stride, and the FCN-poolX are truncated
nets with the same strides as FCN-32/16/8s. Scores are evaluated on a subset
of PASCAL VOC 2011 segval.5

Fig. 5. Training on whole images is just as effective as sampling patches,
but results in faster (wall clock time) convergence by making more effi-
cient use of data. Left shows the effect of sampling on convergence rate
for a fixed expected batch size, while right plots the same by relative wall
clock time.

5. There are training images from [52] included in the PASCAL VOC
2011 val set, so we validate on the non-intersecting set of 736 images.
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PASCAL-Context. Although these tasks have historically
distinguished between objects and regions, we treat both
uniformly as pixel prediction. We evaluate our FCN skip
architecture on each of these datasets, and then extend it to
multi-modal input for NYUDv2 and multi-task prediction
for the semantic and geometric labels of SIFT Flow. All
experiments follow the same network architecture and opti-
mization settings decided on in Section 4.

Metrics. We report metrics from common semantic seg-
mentation and scene parsing evaluations that are variations
on pixel accuracy and region intersection over union (IU):

� pixel accuracy:
P

i nii=
P

i ti
� mean accuraccy: ð1=nclÞ

P
i nii=ti

� mean IU: ð1=nclÞ
P

i nii=ðti þ
P

j nji � niiÞ
� frequency weighted IU:P

k tk
� ��1P

i tinii=ðti þ
P

j nji � niiÞ
where nij is the number of pixels of class i predicted to

belong to class j, there are ncl different classes, and

ti ¼
P

j nij is the total number of pixels of class i.

PASCAL VOC. Table 4 gives the performance of our
FCN-8s on the test sets of PASCAL VOC 2011 and 2012, and
compares it to the previous best, SDS [14], and the well-
known R-CNN [5]. We achieve the best results on mean IU
by 30 percent relative. Inference time is reduced 114�

(convnet only, ignoring proposals and refinement) or 286�
(overall). Fig. 6 compares the outputs of FCN-8s and SDS.

NYUDv2. [55] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1,449 RGB-D images, with pixelwise
labels that have been coalesced into a 40 class semantic seg-
mentation task by Gupta et al. [56]. We report results on the
standard split of 795 training images and 654 testing images.

TABLE 4
Results on PASCAL VOC

mean IU
VOC2011 test

mean IU
VOC2012 test

inference
time

R-CNN [5] 47.9 - -
SDS [14] 52.6 51.6 � 50 s
FCN-8s 67.5 67.2 � 100 ms

Our FCN gives a 30% relative improvement on the previous best PASCAL
VOC test results with faster inference and learning.

Fig. 6. Fully convolutional networks improve performance on PAS-
CAL. The left column shows the output of our most accurate net,
FCN-8s. The second shows the output of the previous best method
by Hariharan et al. [14]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fifth and sixth rows
show failure cases: the net sees lifejackets in a boat as people and
confuses human hair with a dog.

TABLE 5
Results on NYUDv2

pixel acc. mean acc. mean IU f.w. IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 61.8 44.7 31.6 46.0
FCN-32s RGB-D 62.1 44.8 31.7 46.3
FCN-32s HHA 58.3 35.7 25.2 41.7
FCN-32s RGB-HHA 65.3 44.0 33.3 48.6

RGB-D is early-fusion of the RGB and depth channels at the input. HHA
is the depth embedding of [15] as horizontal disparity, height above ground,
and the angle of the local surface normal with the inferred gravity direc-
tion. RGB-HHA is the jointly trained late fusion model that sums RGB
and HHA predictions.

TABLE 6
Results on SIFT Flow

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [57] 76.7 - - - -
Tighe et al. [58] transfer - - - - 90.8
Tighe et al. [59] SVM 75.6 41.1 - - -
Tighe et al. [59] SVM+MRF 78.6 39.2 - - -
Farabet et al. [12] natural 72.3 50.8 - - -
Farabet et al. [12] balanced 78.5 29.6 - - -
Pinheiro et al. [13] 77.7 29.8 - - -
FCN-8s 85.9 53.9 41.2 77.2 94.6

Evaluation of semantics (center) and geometry (right). Farabet is a multi-scale
convnet trained on class-balanced or natural frequency samples. Pinheiro is
the multi-scale, recurrent convnet RCNN3 ð�3Þ. The metric for geometry is
pixel accuracy.

TABLE 7
Results on PASCAL-Context for the 59 Class Task

pixel acc. mean acc. mean IU f.w. IU

O2P - - 18.1 -
CFM - - 34.4 -
FCN-32s 65.5 49.1 36.7 50.9
FCN-16s 66.9 51.3 38.4 52.3
FCN-8s 67.5 52.3 39.1 53.0

CFM is convolutional feature masking [60] and segment pursuit with the
VGG net. O2P is the second order pooling method [61] as reported in the
errata of [62].
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Table 5 gives the performance of several net variations. First
we train our unmodified coarse model (FCN-32s) on RGB
images. To add depth information, we train on a model
upgraded to take four-channel RGB-D input (early fusion).
This provides little benefit, perhaps due to similar number
of parameters or the difficulty of propagating meaningful
gradients all the way through the net. Following the success
of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth and train a net on just this information.
To effectively combine color and depth, we define a “late
fusion” of RGB and HHA that averages the final layer scores
from both nets and learn the resulting two-stream net end-
to-end. This late fusion RGB-HHA net is the most accurate.

SIFT Flow. is a dataset of 2,688 images with pixel labels
for 33 semantic classes (“bridge”, “mountain”, “sun”), as
well as three geometric classes (“horizontal”, “vertical”, and
“sky”). An FCN can naturally learn a joint representation
that simultaneously predicts both types of labels. We learn
a two-headed version of FCN-32/16/8s with semantic and
geometric prediction layers and losses. This net performs as
well on both tasks as two independently trained nets, while
learning and inference are essentially as fast as each inde-
pendent net by itself. The results in Table 6, computed on
the standard split into 2,488 training and 200 test images,6

show better performance on both tasks.
PASCAL-Context. [62] provides whole scene annota-

tions of PASCAL VOC 2010. While there are 400+ classes,
we follow the 59 class task defined by [62] that picks the
most frequent classes. We train and evaluate on the training
and val sets respectively. In Table 7 we compare to the pre-
vious best result on this task. FCN-8s scores 39.1 mean IU
for a relative improvement of more than 10 percent.

6 ANALYSIS

We examine the learning and inference of fully convolu-
tional networks. Masking experiments investigate the role
of context and shape by reducing the input to only fore-
ground, only background, or shape alone. Defining a “null”
background model checks the necessity of learning a back-
ground classifier for semantic segmentation. We detail
an approximation between momentum and batch size to
further tune whole image learning. Finally, we measure

bounds on task accuracy for given output resolutions to
show there is still much to improve.

6.1 Cues

Given the large receptive field size of an FCN, it is natural to
wonder about the relative importance of foreground and
background pixels in the prediction. Is foreground appear-
ance sufficient for inference, or does the context influence
the output? Conversely, can a network learn to recognize a
class by its shape and context alone?

Masking. To explore these issues we experiment with
masked versions of the standard PASCAL VOC segmenta-
tion challenge. We both mask input to networks trained on
normal PASCAL, and learn new networks on the masked
PASCAL. See Table 8 for masked results.

Masking the foreground at inference time is catastrophic.
However, masking the foreground during learning yields a
network capable of recognizing object segments without
observing a single pixel of the labeled class. Masking the
background has little effect overall but does lead to class
confusion in certain cases. When the background is masked
during both learning and inference, the network unsurpris-
ingly achieves nearly perfect background accuracy; how-
ever certain classes are more confused. All-in-all this
suggests that FCNs do incorporate context even though
decisions are driven by foreground pixels.

To separate the contribution of shape, we learn a net
restricted to the simple input of foreground/background
masks. The accuracy in this shape-only condition is lower
than when only the foreground is masked, suggesting that
the net is capable of learning context to boost recognition.
Nonetheless, it is surprisingly accurate. See Fig. 7.

TABLE 8
The Role of Foreground, Background, and Shape Cues

train test

FG BG FG BG mean IU

Reference keep keep keep keep 84.8
Reference-FG keep keep keep mask 81.0
Reference-BG keep keep mask keep 19.8
FG-only keep mask keep mask 76.1
BG-only mask keep mask keep 37.8
Shape mask mask mask mask 29.1

All scores are the mean intersection over union metric excluding back-
ground. The architecture and optimization are fixed to those of FCN-32s (Ref-
erence) and only input masking differs.

Fig. 7. FCNs learn to recognize by shape when deprived of other input
detail. From left to right: regular image (not seen by network), ground
truth, output, mask input.

6. Three of the SIFT Flow classes are not present in the test set. We
made predictions across all 33 classes, but only included classes actu-
ally present in the test set in our evaluation.
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Background modeling. It is standard in detection and
semantic segmentation to have a background model. This
model usually takes the same form as the models for the
classes of interest, but is supervised by negative instan-
ces. In our experiments we have followed the same
approach, learning parameters to score all classes includ-
ing background. Is this actually necessary, or do class
models suffice?

To investigate, we define a net with a “null” back-
ground model that gives a constant score of zero. Instead
of training with the softmax loss, which induces competi-
tion by normalizing across classes, we train with the sig-
moid cross-entropy loss, which independently normalizes
each score. For inference each pixel is assigned the highest
scoring class. In all other respects the experiment is identi-
cal to our FCN-32s on PASCAL VOC. The null background
net scores 1 point lower than the reference FCN-32s and a
control FCN-32s trained on all classes including back-
ground with the sigmoid cross-entropy loss. To put this
drop in perspective, note that discarding the background
model in this way reduces the total number of parameters
by less than 0.1 percent. Nonetheless, this result suggests
that learning a dedicated background model for semantic
segmentation is not vital.

6.2 Momentum and Batch Size

In comparing optimization schemes for FCNs, we find that
“heavy” online learning with high momentum trains more
accurate models in less wall clock time (see Section 4.2).
Here we detail a relationship between momentum and
batch size that motivates heavy learning.

By writing the updates computed by gradient accu-
mulation as a non-recursive sum, we will see that
momentum and batch size can be approximately traded
off, which suggests alternative training parameters. Let
gt be the step taken by minibatch SGD with momentum
at time t,

gt ¼ �h
Xk�1

i¼0

ru‘ðxktþi; ut�1Þ þ pgt�1;

where ‘ðx; uÞ is the loss for example x and parameters u,
p < 1 is the momentum, k is the batch size, and h is the
learning rate. Expanding this recurrence as an infinite sum
with geometric coefficients, we have

gt ¼ �h
X1
s¼0

Xk�1

i¼0

psru‘ðxkðt�sÞþi; ut�sÞ:

In other words, each example is included in the sum with
coefficient pbj=kc, where the index j orders the examples from
most recently considered to least recently considered.
Approximating this expression by dropping the floor, we see
that learning with momentum p and batch size k appears to
be similar to learning with momentum p0 and batch size k0 if
pð1=kÞ ¼ p0ð1=k

0Þ. Note that this is not an exact equivalence: a
smaller batch size results in more frequent weight updates,
and may make more learning progress for the same number
of gradient computations. For typical FCN values of momen-
tum 0:9 and a batch size of 20 images, an approximately

equivalent training regime uses momentum 0:9ð1=20Þ 	 0:99
and a batch size of one, resulting in online learning. In prac-
tice, we find that online learningworkswell and yields better
FCNmodels in less wall clock time.

6.3 Upper Bounds on IU

FCNs achieve good performance on the mean IU seg-
mentation metric even with spatially coarse semantic
prediction. To better understand this metric and the
limits of this approach with respect to it, we compute
approximate upper bounds on performance with predic-
tion at various resolutions. We do this by downsampling
ground truth images and then upsampling back to simu-
late the best results obtainable with a particular down-
sampling factor. The following table gives the mean
IU on a subset5 of PASCAL 2011 val for various down-
sampling factors.

factor mean IU

128 50.9
64 73.3
32 86.1
16 92.8
8 96.4
4 98.5

Pixel-perfect prediction is clearly not necessary to
achieve mean IU well above state-of-the-art, and, con-
versely, mean IU is a not a good measure of fine-scale accu-
racy. The gaps between oracle and state-of-the-art accuracy
at every stride suggest that recognition and not resolution is
the bottleneck for this metric.

7 CONCLUSION

Fully convolutional networks are a rich class of models that
address many pixelwise tasks. FCNs for semantic segmen-
tation dramatically improve accuracy by transferring pre-
trained classifier weights, fusing different layer representa-
tions, and learning end-to-end on whole images. End-to-
end, pixel-to-pixel operation simultaneously simplifies and
speeds up learning and inference. All code for this paper is
open source in Caffe, and all models are freely available in
the Caffe Model Zoo. Further works have demonstrated the
generality of fully convolutional networks for a variety of
image-to-image tasks.
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